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dimensions: a = 9.649)1, and c = 7.1813,. The 
indexing gives a unit-cell volume of 579 A_ 3 and 
with the number of  molecules per unit cell z = 2, a 
calculated density value of 5.68 g cm -a was 
obtained which is in good agreement with the 
experimental density value of 5.61 g cm -3 . 

The cell parameters proposed for the compound 
CeloSi6024N 2 are found to be close to the values 
for the analogous silicon lanthanide oxynitride [I ] 
and silicon yttrium oxynitride [4]. As can be 
expected, the lattice parameter values show an 
increasing trend with increasing "ionic" radii of 
the rare-earth cation Ln 3+ and y3+. It is note- 
worthy that a cerium oxysilico-apatite having a 
formula of Ce4.67(Si04)30 which occurs in the 
pseudobinary join S i Q - C % 0 3  has a fluorapatite 
structure [6] similar to that of the nitrogen- 
containing apatite phase Ces(SiOa)3N reported 
here and thus the X-ray diffraction pattern for one 
could be easily mistaken for the other. The nature 
and characteristics of various apatite-type phases 
in the system C e - S i - O - N  and compatibility 

relations between them will be described in detail 
in a separate publication. 
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On the adsorption processes in the selective 
etching of MgO and CaF2 crystals 

In a detailed study of the etching of LiF, Gilman 
et al. [1] found trivalent cations in water to be 
effective agents in the formation of etch pits at 
dislocation sites. It was suggested that these 
cations chemisorb at kink sites in a ledge and 
fhus inhibit its motion. Since their work, many 
observations [2-4]  of the etching phenomenon 
have been reported on alkali halides, which indi- 
cate that the inhibition process is not simple 
chemisorption. Etchants of  semiconductors and 
metals are still more complicated and, con- 
sequently, are less suited for the study of the 
mechanism of adsorption and etch-pit formation. 
Etchants of  periclase, fluorites and barytes are 
aqueous acidic solutions and hence etching studies 
on these crystals may be hoped to provide con- 
siderably fruitful information on the dissolution 
process. 

In the present communication the adsorption 
process taking place on MgO and CaF2 crystals is 
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analysed from a study of  the dependence of 
selective etch rates on the concentration and tem- 
perature of HC1. Etching was conducted on { 1 0 0} 
faces of  MgO and {1 1 I} faces of  CaF2 crystals 
in the temperature range 20 to 80 ~ C. The rate of 
lateral etching, vt, at dislocations in MgO was 
determined using the procedure employed earlier 
[5]. In the case of CaF2, the rate was computed 
from the distance between a side and the opposite 
corner of a triangular etch pit, and from the 
distance between the opposite sides of  a hexagonal 
pit. 

The dependence of vt on concentration, c, at 
different etchant temperature is shown in Figs. 1 
and 2 for MgO and CaF2 crystals, respectively. It 
may be noted from these figures that vt attains a 
maximum value, Vma,,, and then decreases with a 
further increase in c. The values of Vma~ and Cma~ 
depend on the nature of the acid (Fig. 2), the 
crystal, and on the etching temperature. The value 
of erna~ decreases with an increase in etching 
temperature. 

It was also observed that the etch-pit mot- 
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Figure l Graph showing the dependence of v t for MgO 
on c of HC1 at different temperatures: (1) 29 ~ C, (2) 40 ~ C, 
(3) 50.5 ~ C and (4) 63 ~ C and (5) 79.5 ~ C. 

phology varies with increase in acid concentrat ion.  
In MgO at low concentrations,  (1 1 0) pits and, at 
high concentrations,  (1 0 0) pits are formed.  In the 

neighbourhood o f  Cmax, pits are circular. In the 
case of  CaF2, pits are triangular at low concen- 
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Figure 2 Plots of the dependence of v t on c of HCl 
(1-6) and HNO~ (7) for CaFz. Temperatures of etching: 
(1) 29 ~ (2) 35 ~ (3) 40 ~ (4) 50 ~ (5) 60 ~ 
(6) 72 ~ (7) 29 ~ C. 
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t rat ions,  while they are hexagonal around and 

beyond cm~ (Fig. 3). 

The appearance of  peaks in the curves o f  etch 

rate versus CuC12 �9 2H20 concentrat ion in alcohols 
was first observed in CsI crystals [3, 4] and 
subsequently in the curves of  etch rate versus acid 
concentrat ion in the case o f  MgO crystals [5].  
The maximum corresponds to that concentrat ion 
o f  CuC12- 2H20,  and o f  HNO3 and HC1 at which 
octagonal or circular pits were observed to form. 
In CsI [3, 4] the behaviour was explained on the 
basis o f  the influence of  copper complexes on the 
nucleation and movement of  dissolution steps. The 
appearance o f  maxima in MgO was at tr ibuted to 
the adsorption of  acid and reaction products  [5] .  
Here we apply an approach [6] which involves the 
velocity of  acid ions, their adsorption on the 
crystal surface, formation o f  some complex and 
its adsorption on the crystal surface, and discuss 
the nature o f  adsorption processes. 

Assume that  the processes of  dissolution 
proceeds as follows [6] : 

2MgO + 2H++  2An-  Z 

1 .. H . - . A n . .  2 
M g O .  : MgO - " 

�9 H . - . A n "  

(unadsorbed) 

2 MgO:"'. H . . . .  An...  
- " :MgO \ 

"" H...-An-'" 

(adsorbed) 
3 

- activated complex 

products (1) 

Here A n -  represents an anion. The number ns of  
the complex molecules on the surface is [6] 

concentration 
crystal 

low high highest 

CaF 2 

Figure 3 Change in the 
HC1 concentration. High 
of maximum etch rates. 

morphology of etch pits with 
concentration implies the range 
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(3kT]  a/2 
r H _ _  

ns = ZrV4 \ m n /  

{g(E, + E~) + �89 } / kT] ,  (2) • exp [-- 1 , 

where nH is the concentration o f  H § ions in the 
etchant, Z the number o f  free bonds on the 
surface, m H the mass o f  an H + ion, r the ratio 
o f  mass o f  an anion to that o f  H + ion, E '  1 and 
E~ the energies required for the capture and 
migration of  a pair of  each I-I + and An-  ion respec- 
tively, on the surface, E~ the energy of  formation 
of  an unadsorbed complex molecule 

�9 H . . . A n .  
MgO)( ":MgO, 

�9 H . . . A n . "  

and ~b = ~-1"9c0"8 [6] for HC1. ~ and c appearing 
in the equation are degree of  dissociation and 
concentration of  the acid, respectively. It can be 
shown that for various peak values of  c of  HC1, 

~ 2 5 ,  and r v 4 =  2.44. Hence for Z =  1, one 
obtains 

"s  = 10t '3kT]  1/2 
nH \mH,!  

1 t • exp [-- {~(E 1 +E;) + �89  

Replacing the numbers ns and nH by the corre- 
sponding concentrations of  

. . H . . . A n . .  
MgO" "MgO (unadsorbed) 

" " H - . . A n " "  

and acid, we have 

Ccom = lo{3kTi'/2__ 
c \ m n  ] 

1 P • exp [-- {z(E1 +E~)  + �89 (3) 

The equilibrium constants corresponding to 
steps 1 and 2 of  Equation 1 are 

�9 H - . - A n . .  M g  O1/ 

H "  "An""  J unads  Ceom 
K,  = [HI 2 [ C 1 ]  2 ~ 4 c 4 ,  

...H .... An.. 
I MgO: "'MgO1 
t ""H .... A n . ' "  Jads 

K2 = 
M .-H'" . A n .  

:MgO] 
gO:. .  H-" .An." J u~ads 

whence 
g l = Ccorn 

1~4C 4 , (4) 

1 
K 2 = Klot4c 4 . (5) 

Using Equation 4, Equation 3 may be written in 
the form 

(3kTiV2  Klot3c 3 =  10 - -  
\ma I 

•  1 , {~(E1 + E ; )  + �89 �9 (6) 

I f E  4 is the energy of  adsorption o f  

..-H .... An.. 
MgO'. i:MgO, 

"'H .... An-" 

the adsorption equilibrium constant is given by 
[7] 

1 
K2 - KlOL4C 4 - exp [AS~ exp [- -E~/kT] .  

(7) 

where AS ~ is the change in entropy due to 
adsorption�9 

From Equation 6, K1 corresponding to the 
peak values of  the acid concentration at different 

1 t temperatures, and {g(El + E~) + �89 may be 
estimated. Substituting the values of  K1 and c 
in Equation 5, K2 at different temperatures may 
also be calculated�9 The calculated values of  Kx,  

1 t K2 and {z(E~ + E ~ ) +  �89 are given in Table I. 
Then from a plot o f  logK2 versus 1/T (Fig. 4), 

t 1 t E4 may be determined�9 The values of  {~(Ex + 
1 t t E~) + ~E3} and E4 for the selective etching of  

MgO and CaF2 in HC1 are listed in Table II. 

TABLE I Estimated values of K~, K 2 and {�88 + 
E~)+ i ,~,~ - ~-~35 - E for the etching of MgO and CaFz crystals 

T (K) K, K 2 

MgO 
E = 0�9 eV 

CaF~ 
E = 0.23 eV 

302.5 1.02 65.5 
313.0 1.49 71.8 
323.5 1.53 92.6 
336.0 2.31 102.6 
352.5 2.31 142.2 

302 4�9 1.59 
308 3.87 2.10 
313 3.24 2.67 
323 1.89 5.00 
333 1.72 6.49 
345 1.01 11.90 

l , ' l  * A higher value of {~(E'~ + E'z ) + ~-E 3 y gives a higher K~ and, consequently, a 
However, this increase in E' 4 is not appreciable. 
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lower K 2 . This leads to a higher E' 4 . 
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Figure 4 Plots of the dependence of logK 2 on 1/T for 
(1) MgO and (2) CaF 2 . 

Assuming that the energy of the formation of 
the complex molecule and the energy of the 
migration of H + and An- on a surface are negligible, 
i t : (Et  + E ; )  may be taken as the energy of adsorp- 
tion of a pair of each H + and An- ions on the surface. 
Now the heat of physical adsorption is usually 
below 0.4 eV [8]. Therefore, it may be concluded 
that for MgO and CaF~ in the region where peaks 
in the rate versus concentration curves develop, 
adsorption of an individual H + and CI- and of 
the intermediate complex is physical. The process 
is also associated with an increase in entropy 
(Table II). 
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CaF 2 0.92 0.42 4.1 

* Assuming that E 3 g 0. 
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Electron microscopic examination of 
splat-cooled foils of Sn-Sb-Ag Alloy 

By very rapidly cooling from the melt (so-called 
liquisol quenching) Klement et al. [ 1 ] were able to 
solidify Au-Si  alloys near the eutectic composi- 
tion in an amorphous state. This discovery has 
since been followed by the production of large 
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number of amorphous phases in a variety of binary 
and ternary alloy systems using liquid quenching 
[2 -6] .  Added to these exciting results, researchers 
in this field have also observed unusual properties 
in materials prepared by liquisol quenching, such 
as striking improvements in the mechanical prop- 
erties and unexpected semiconducting and super- 
conducting properties. One should note the works 
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